在 RAG(Retrieval-Augmented Generation)中,向量的意义在于将文本数据转换为高维向量表示,以便进行高效的相似性搜索和信息检索。具体来说,向量在 RAG 中的作用包括:
文本嵌入:将文本数据(如用户查询、文档内容)转换为向量表示。这些向量捕捉了文本的语义信息,使得相似的文本在向量空间中距离较近。
相似性搜索:通过计算向量之间的距离(如余弦相似度),可以快速找到与查询向量最相似的文档向量,从而实现高效的信息检索。
增强生成:在生成式模型(如 GPT)生成文本时,利用检索到的相关文档向量作为辅助信息,提高生成结果的相关性和准确性。
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。