贝叶斯算法是分类问题的重要解决方法,简单但是很强大,在文本分类、垃圾邮件识别等高维数据(特征超多的数据集)的机器学习领域有重要应用。基本逻辑就是很多的时候我们很容易知道在不同的因变量的水平上自变量的分布的怎样的,我们要解决的问题是知道了特征的情况然后去预测因变量,其实就是:from P(X|Y), known from the training dataset, to find P(Y|X).朴素贝叶斯算法架起了从from P(X|Y)to find P(Y|X)的桥梁。
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。